随后就是由Negishi(美国的Negishi,比你们高到不知道哪去了,我和他谈笑风生)和Suzuki引起的第二波热潮,这波主要从1976年到1995年,主要是对普适性的研究。1976年,Negishi报道了钯催化的有机铝和有机锌底物的偶联反应.( Negishi 反应)
1979年,Suzuki报道了零价钯配合物催化下,芳基或烯基硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。( Suzuki-Miyaura反应)
以上三位,就是2010年因为发现 钯催化交叉偶联反应而获得诺贝尔奖的Heck,Negishi和Suzuki三位,他们奠定了钯在有机合成领域难以动摇的地位和作用。
同一时期比较重要的钯催化偶联反应还包括1978年的 Stille Reaction(有机锡化合物和不含β-氢的卤代烃在钯催化下发生的交叉偶连)、1988年的 Hiyama Reaction(钯催化的芳基、烯基、烷基卤化物或拟卤与有机硅烷之间的交叉偶联)、1993年的 Miyaura Borylation(钯催化硼烷化反应)、1995年的 Buchwald–Hartwig Coupling(钯催化和碱存在下胺与芳卤的交叉偶联)等,可谓是百家争鸣、百花齐放。
第三波就是2000年左右到现在了,主要是新配体和新反应类型的引入。严格的说,其实第三波的钯催化主要是对现有反应类型,也就是上面说的几个人名反应的补充研究,但是依然不能低估这些工作的重要性,钯催化的深度和广度在这一时期得到了飞速的发展,无数新的定位基,官能团,底物,配体都被一一发现,同时应用于 天然产物全合成(参见P. Baran的C–H functionalization logic in total synthesisw,Chem. Soc. Rev., 2011, 40, 1976–1991)和 大规模工业化生产(参见氯沙坦钾、圆皮海绵内酯、格列卫等药的生产)也使得钯催化的意义不仅仅停留在纸面上,而进一步投入到了国民生产和建设社会主义这种利国利民的伟大事业中去了。
==========================================
2016/07/21更新
作为能够改善反应条件,优化金属有机催化剂性质的重要物质,配体在过渡金属催化体系中一向占有非常重要的位置,在钯催化研究的早期,便宜易得的三苯基膦是最常用的配体,随着研究的深入,研究人员逐渐发现配体对于催化循环具有重要的影响,同时配体也成为公认的最重要的需要详细调查的变量之一。事实上早在1979年,Kumada就发现在以他的名字命名的 Corriu–Kumada reaction(烷卤或者芳卤在钯催化下和格式试剂偶联)中用DPPF代替三苯基膦,效果非常一颗赛艇。双齿配体在这里促进了催化循环中的还原消除步骤,从而加速了反应速率。
在随后的几年中,对配体进行深入研究的影响远非仅仅体现在Kumada偶联这一个人名反应中,许多复杂高效的双齿配体(P-P、P-C、P-N、P-O)都被一一发现。不过一开始大家研究的都是芳基磷配体的位阻效应,在八十年代早期,Heck就发现了位阻比三苯基膦大的三邻甲苯基膦和钯的配合物活性更高(Org. React. 1982, 27, 345 – 390.),随后Spencer也发现了醋酸钯和三邻甲苯基膦配合效果更好,不过他认为这不能仅仅归结于键位阻的作用,同一年,Osborn发现三环己基膦在羰基化反应中是一个良好的配体,并且他意识到只有当配体具有强碱性 (pKa>6.5),并且具有良好的空间体积(锥角>160度)时,才具有显著地催化活性(Angew. Chem. Int. Ed. Engl. 1989, 28, 1386 –1388.),这也给后来的化学家们指明了膦的电子性质也对催化活性至关重要。在同一时期Milstein在羰基化氯苯时采用了富电子的双齿配体1,3-双(二苯膦基)丙烷( J. Am. Chem. Soc. 1989, 111, 8742 – 8744),随后的配体研究进入了一段风起云涌的时代,以前不能用于偶联反应的底物在配体的帮助下被一一攻克。
这里需要着重提一下 Gregory C. Fu,他在1998年的独立工作(Angew. Chem. Int. Ed. 1998, 37, 3387 – 3388)重新点燃了学界和工业界对于钯配体的研究热度,配体的研究在过去十年中迅速增长,G.C Fu可以说在其中发挥了重要的作用。2000年他报道了P(t-Bu)3和P(Cy)3两种不同的配体去催化Suzuki–Miyaura couplings,可以选择性的分别和卤苯或者对三氟甲磺酸苯进行偶联,这项开创性工作告诉人们,钯催化的化学选择性是可以通过配体调节的。2001年,Fu又发现在P(Cy)3配体作用下卤代烷与烷基或乙烯基有机硼可以偶联,这又使得Suzuki偶联向前迈进了一大步。2002年,Fu采用了位阻和电子性质介于P(t-Bu)3和P(Cy)3之间的P(tBu)2Me,解决了烷基钯催化循环中间竞争性的β氢消除这一巨大难题。同时期还有一些值得注意的配体还包括正丁基二(1-金刚烷基)膦(cataCXium)、Buchwald的联苯类配体、Hatwig的1,2,3,4,5-戊苯基-1′-(二叔丁基磷基)二茂铁(Q-Phos)等等。
================================================
PS:篇幅所限,下面我就简单讲讲吧。。
之前讲的钯催化反应大致都围绕下面这个催化循环过程,偶联双方都是有机卤化物(或拟卤化物)和有机金属试剂(或亲核杂原子),但是还有一些反应并非如此,主要包括以下四类:
1)烯丙基烷基化反应 Allylic Alkylation
Tsuji–Trost allylation是烯丙基醇以及其衍生物烯丙基卤化物、酯、 碳酸盐,磷酸盐等作为反底物,在零价钯的催化作用下,各种各样的亲核试剂发生取代反应从而导入各种各样的基团,俗称烯丙基烷化,1965年由Tsuji最先发现,1973年Trost也做了第一篇烯丙基烷基化,但是奠定他地位的还是1977年的不对称烯丙基烷基化反应。
2)羰基化合物的α芳基化反应 α-Arylation of Carbonyl Compounds
其实羰基化合物的α芳基化反应最早是Semmelhack在1973年发现的,不过他用了当量的有机镍试剂,在1997年,Hartwig、Buchwald和Miura竟然一起报道了这个反应,现在,这个反应在工业应用中是一个很好的构筑C-C键的反应。
3)脱羧偶联 Decarboxylative Coupling Reactions
最原始的脱羧偶联是1966年Nilsson报道的,当时他几乎用了当量的铜,在比较苛刻的条件下达成了这一偶联。
在近四十年之后,Myers发现用二价钯盐可以达成脱羧偶联。
和C-H键活化相比较,脱羧偶联具有一个优点,因为偶联的位置已经定位好了,所以反应中不会存在区域选择性的问题,
4)碳氢键活化 C- H Activation Reactions
C-H键活化是所有化学家的梦想,以上所有反应基本上都涉及到脱去一个卤素或者拟卤素原子,原子经济学非常差,而C-H活化直接作用于C-H键,无需活化,简洁高效,效果拔群。
第一个C-H活化是1963年Kleiman和Dubeck发现的,当时他们用的是Ni催化剂
紧接着Chatt和Davidson发现了钌萘化合物存在一个π-化合物和一个C-H键插入的平衡
随后在1969年, Fujiwara报道了钯催化的C-H键氧化偶联,这篇文章也是钯催化C-H键活化的鼻祖
在随后的20年中Du Bois, Fagnou(致天国的Fagnou,钯催化届的巨大损失), Gaunt, Hartwig, Miura, Sanford, Yu等人相继在钯催化C-H键活化这一方向做出了巨大的贡献。
PS:C-H活化是要是详细讲最少也能讲十个课时,要是有兴趣可以看看我提到的这几位写的Review。
---------------------
先更到这里,以后有空再查漏补缺,难免有所疏漏,欢迎大家斧正~
转自:知乎, 版权归原作者所有返回搜狐,查看更多